Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 2.649 IF 2.649
  • IF 5-year<br/> value: 2.688 IF 5-year
    2.688
  • CiteScore<br/> value: 2.64 CiteScore
    2.64
  • SNIP value: 0.628 SNIP 0.628
  • SJR value: indexed SJR
    indexed
  • IPP value: 1.689 IPP 1.689
  • h5-index value: 6 h5-index 6
ESurf cover
Open access Public peer review Article level metrics Moderate APCs
Managing editor:
Tom
Coulthard
Editors: Niels Hovius, Douglas Jerolmack, Andreas Lang & A. Joshua West
Earth Surface Dynamics (ESurf) is an international scientific journal dedicated to the publication and discussion of high-quality research on the physical, chemical, and biological processes shaping Earth's surface and their interactions on all scales.
The main subject areas of ESurf comprise field measurements, remote sensing, and experimental and numerical modelling of Earth surface processes, and their interactions with the lithosphere, biosphere, atmosphere, hydrosphere, and pedosphere. ESurf prioritizes studies with general implications for Earth surface science and especially values contributions that straddle discipline boundaries, enhance theory‚Äďobservation feedback, and/or apply basic principles from physics, chemistry, or biology.
News
New article processing charges for ESurf 05 Dec 2017

From 1 January 2018 Earth Surface Dynamics (ESurf) will slightly increase the article processing charges.

New institutional agreement between the PIK and Copernicus Publications 24 Aug 2017

Authors from the Potsdam Institute for Climate Impact Research (PIK) will profit from a new institutional agreement with Copernicus Publications starting 23 August 2017. The agreement which is valid for the first author enables a direct settlement of article processing charges (APCs) between the PIK and the publisher.

Update of publication policy 04 Jul 2017

The updated publication policy now is extended by the journal's open access statement, its archiving and indexing scheme, and explicit policies on corrections and retractions.

Recent articles

Highlight articles

The role of mountain uplift and associated silicate weathering in the global climate over geological times is controversial. Previous soil column models suggest that weathering falls at a high denudation rate. We present the results of a 3-D model that couples erosion and weathering, a CO2 consumer during mountain uplift. Our model suggests that the weathering of temporarily stocked colluvium may contribute significantly to the mountain weathering outflux at high denudation rates.

Sébastien Carretier, Yves Goddéris, Javier Martinez, Martin Reich, and Pierre Martinod

 

Sediments produced by glaciers are transported by rivers and wind toward the ocean. During their journey, these sediments are weathered, and we know that this has an impact on climate. One key factor is time, but the duration of this journey is largely unknown. We were able to measure the average time that sediment spends only in the glacial area. This time is 100–200 kyr, which is long and allows a lot of processes to act on sediments during their journey.

Antoine Cogez, Frédéric Herman, Éric Pelt, Thierry Reuschlé, Gilles Morvan, Christopher M. Darvill, Kevin P. Norton, Marcus Christl, Lena Märki, and François Chabaux

 

The layer known as the critical zone extends from the tree tops to the groundwater. This zone varies globally as a function of land use, climate, and geology. Energy and materials input from the land surface downward impact the subsurface landscape of water, gas, weathered material, and biota – at the same time that differences at depth also impact the superficial landscape. Scientists are designing observatories to understand the critical zone and how it will evolve in the future.

Susan L. Brantley, William H. McDowell, William E. Dietrich, Timothy S. White, Praveen Kumar, Suzanne P. Anderson, Jon Chorover, Kathleen Ann Lohse, Roger C. Bales, Daniel D. Richter, Gordon Grant, and Jérôme Gaillardet

 

We use a seismometer network to detect and locate rockfalls, a key process shaping steep mountain landscapes. When tested against laser scan surveys, all seismically detected events could be located with an average deviation of 81 m. Seismic monitoring provides insight to the dynamics of individual rockfalls, which can be as small as 0.0053 m3. Thus, seismic methods provide unprecedented temporal, spatial and kinematic details about this important process.

Michael Dietze, Solmaz Mohadjer, Jens M. Turowski, Todd A. Ehlers, and Niels Hovius

 

Our work presents a novel method of measuring the capacity of deltaic landforms to trap and retain river-borne sediments, and we demonstrate that sediment retention is closely connected to sedimentary composition. Our results, supported by a unique high-resolution coring dataset in a major crevasse splay, show that finer sediments are a much larger component of the Mississippi Delta than is often acknowledged and that their abundance indicates exceptionally high rates of sediment retention.

Christopher R. Esposito, Zhixiong Shen, Torbjörn E. Törnqvist, Jonathan Marshak, and Christopher White

 

Publications Copernicus